Photosynthesis re-wired on the pico-second timescale (2025)

  • Grattieri, M., Beaver, K., Gaffney, E. M., Dong, F. & Minteer, S. D. Advancing the fundamental understanding and practical applications of photo-bioelectrocatalysis. Chem. Commun. 56, 8553–8568 (2020).

    Article CAS Google Scholar

  • Zhang, J. Z. & Reisner, E. Advancing photosystem II photoelectrochemistry for semi-artificial photosynthesis. Nat. Rev. Chem. 4, 6–21 (2020).

    Article CAS Google Scholar

  • Fu, H.-Y. et al. Redesigning the QA binding site of Photosystem II allows reduction of exogenous quinones. Nat. Commun. 8, 15274 (2017).

    Article PubMed PubMed Central ADS Google Scholar

  • Jordan, P. et al. Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411, 909–917 (2001).

    Article CAS PubMed ADS Google Scholar

  • Shen, G., Boussiba, S. & Vermaas, W. F. J. Synechocystis sp PCC 6803 strains lacking photosystem I and phycobilisome function. Plant Cell 5, 1853 (2007).

    Google Scholar

  • Berera, R., van Grondelle, R. & Kennis, J. T. M. Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems. Photosynth. Res. 101, 105–118 (2009).

    Article CAS PubMed PubMed Central Google Scholar

  • Harris, E. H. Chlamydomonas as a model organism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 363–406 (2001).

    Article CAS PubMed Google Scholar

  • Suda, S. et al. Taxonomic characterization of a marine Nannochloropsis species, N. oceanica sp. nov. (Eustigmatophyceae). Phycologia 41, 273–279 (2019).

  • Park, S. et al. Chlorophyll–carotenoid excitation energy transfer and charge transfer in Nannochloropsis oceanica for the regulation of photosynthesis. Proc. Natl Acad. Sci. USA 116, 3385–3390 (2019).

    Article CAS PubMed PubMed Central ADS Google Scholar

  • Howe, C. J., Barbrook, A. C., Nisbet, R. E. R., Lockhart, P. J. & Larkum, A. W. D. The origin of plastids. Philos. Trans. R. Soc. B: Biol. Sci. 363, 2675–2685 (2008).

    Article CAS Google Scholar

  • Lea-Smith, D. J. et al. Hydrocarbons are essential for optimal cell size, division, and growth of cyanobacteria. Plant Physiol. 172, 1928–1940 (2016).

    Article CAS PubMed PubMed Central Google Scholar

  • Fălămas, A., Porav, S. A. & Tosa, V. Investigations of the energy transfer in the phycobilisome antenna of Arthrospira platensis using femtosecond spectroscopy. Appl. Sci. 10, 4045 (2020).

  • Kopczynski, M. et al. Ultrafast transient lens spectroscopy of various C40 carotenoids: lycopene, β-carotene, (3R,3′ R)-zeaxanthin, (3R,3′ R,6′ R)-lutein, echinenone, canthaxanthin, and astaxanthin. Phys. Chem. Chem. Phys. 7, 2793–2803 (2005).

    Article CAS PubMed Google Scholar

  • Longatte, G. et al. Investigation of photocurrents resulting from a living unicellular algae suspension with quinones over time. Chem. Sci. 9, 8271–8281 (2018).

    Article CAS PubMed PubMed Central Google Scholar

  • Evans, M. C. W. & Heathcote, P. Effects of glycerol on the redox properties of the electron acceptor complex in spinach Photosystem I particles. Biochim. Biophys. Acta Bioenerg. 590, 89–96 (1980).

    Article CAS Google Scholar

  • De Causmaecker, S., Douglass, J. S., Fantuzzi, A., Nitschke, W. & Rutherford, A. W. Energetics of the exchangeable quinone, QB, in Photosystem II. Proc. Natl Acad. Sci. USA 116, 19458–19463 (2019).

    Article PubMed PubMed Central ADS Google Scholar

  • Stirbet, A. Excitonic connectivity between photosysstem II units: what is it, and how to measure it? Photosynth. Res. 116, 189–214 (2013).

  • Mirkovic, T. et al. Light absorption and energy transfer in the antenna complexes of photosynthetic organisms. Chem. Rev. 117, 249–293 (2017).

  • Ma, F., Romero, E., Jones, M. R., Novoderezhkin, V. I. & van Grondelle, R. Both electronic and vibrational coherences are involved in primary electron transfer in bacterial reaction center. Nat. Commun. 10, 933 (2019).

    Article PubMed PubMed Central ADS Google Scholar

  • Dods, R. et al. Ultrafast structural changes within a photosynthetic reaction centre. Nature 589, 310–314 (2021).

    Article CAS PubMed ADS Google Scholar

  • Trebst, A. The three-dimensional structure of the herbicide binding niche on the reaction center polypeptides of photosystem II. Z. Naturforsch. C J. Biosci. 42, 742–750 (1987).

    Article CAS Google Scholar

  • Longatte, G. et al. Evaluation of photosynthetic electrons derivation by exogenous redox mediators. Biophys. Chem. 205, 1–8 (2015).

    Article CAS PubMed Google Scholar

  • O’Reilly, J. E. Oxidation-reduction potential of the ferro-ferricyanide system in buffer solutions. Biochim. Biophys. Acta Bioenerg. 292, 509–515 (1973).

    Article Google Scholar

  • Durrant, J. R. et al. Subpicosecond equilibration of excitation energy in isolated photosystem II reaction centers. Proc. Natl Acad. Sci. USA 89, 11632–11636 (1992).

    Article CAS PubMed PubMed Central ADS Google Scholar

  • Groot, M. L. et al. Initial electron donor and acceptor in isolated Photosystem II reaction centers identified with femtosecond mid-IR spectroscopy. Proc. Natl Acad. Sci. USA 102, 13087–13092 (2005).

    Article CAS PubMed PubMed Central ADS Google Scholar

  • Klug, D. R., Durrant, J. R. & Barber, J. The entanglement of excitation energy transfer and electron transfer in the reaction centre of photosystem II. Philos. Trans. R. Soc. London, Ser. A 356, 449–464 (1998).

    Article CAS ADS Google Scholar

  • Russo, M., Casazza, A. P., Cerullo, G., Santabarbara, S. & Maiuri, M. Ultrafast excited state dynamics in the monomeric and trimeric photosystem I core complex of Spirulina platensis probed by two-dimensional electronic spectroscopy. J. Chem. Phys. 156, 164202 (2022).

    Article CAS PubMed ADS Google Scholar

  • Slavov, C., Ballottari, M., Morosinotto, T., Bassi, R. & Holzwarth, A. R. Trap-limited charge separation kinetics in higher plant photosystem I complexes. Biophys. J. 94, 3601–3612 (2008).

    Article CAS PubMed PubMed Central ADS Google Scholar

  • Lee, Y., Gorka, M., Golbeck, J. H. & Anna, J. M. Ultrafast energy transfer involving the red chlorophylls of cyanobacterial photosystem I probed through two-dimensional electronic spectroscopy. J. Am. Chem. Soc. 140, 11631–11638 (2018).

    Article CAS PubMed Google Scholar

  • Shelaev, I. V. et al. Femtosecond primary charge separation in Synechocystis sp. PCC 6803 photosystem I. Biochim. Biophys. Acta Bioenerg. 1797, 1410–1420 (2010).

    Article CAS Google Scholar

  • Weliwatte, N. S., Grattieri, M. & Minteer, S. D. Rational design of artificial redox-mediating systems toward upgrading photobioelectrocatalysis. Photochem. Photobiol. Sci. 20, 1333–1356 (2021).

    Article CAS PubMed PubMed Central Google Scholar

  • Bennett, T. et al. Elucidating the role of methyl viologen as a scavenger of photoactivated electrons from photosystem I under aerobic and anaerobic conditions. Phys. Chem. Chem. Phys. 18, 8512–8521 (2016).

    Article CAS PubMed Google Scholar

  • Wey, L. T. et al. The development of biophotovoltaic systems for power generation and biological analysis. Chem. Electro. Chem. 6, 5375–5386 (2019).

    CAS PubMed Google Scholar

  • Kato, M., Zhang, J. Z., Paul, N. & Reisner, E. Protein film photoelectrochemistry of the water oxidation enzyme photosystem II. Chem. Soc. Rev. 43, 6485–6497 (2014).

    Article CAS PubMed Google Scholar

  • Lea-Smith, D. J., Bombelli, P., Vasudevan, R. & Howe, C. J. Photosynthetic, respiratory and extracellular electron transport pathways in cyanobacteria. Biochim. Biophys. Acta, Bioenerg. 1857, 247–255 (2016).

    Article CAS Google Scholar

  • Kurashov, V. et al. Critical evaluation of electron transfer kinetics in P700–FA/FB, P700–FX, and P700–A1 Photosystem I core complexes in liquid and in trehalose glass. Biochim. Biophys. Acta Bioenerg. 1859, 1288–1301 (2018).

    Article CAS PubMed Google Scholar

  • Setif, P. Q. Y. & Bottin, H. Laser flash absorption spectroscopy study of ferredoxin reduction by photosystem I: spectral and kinetic evidence for the existence of several photosystem I-ferredoxin complexes. Biochemistry 34, 9059–9070 (1995).

    Article CAS PubMed Google Scholar

  • Young, I. D. et al. Structure of photosystem II and substrate binding at room temperature. Nature 540, 453–457 (2016).

    Article CAS PubMed PubMed Central ADS Google Scholar

  • Stanier, R. Y., Kunisawa, R., Mandel, M. & Cohen-Bazire, G. Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol. Rev. 35, 171–205 (1971).

    Article CAS PubMed PubMed Central Google Scholar

  • Lea-Smith, D. J. et al. Thylakoid terminal oxidases are essential for the cyanobacterium Synechocystis sp. PCC 6803 to survive rapidly changing light intensities. Plant Physiol. 162, 484–495 (2013).

    Article CAS PubMed PubMed Central Google Scholar

  • Lea-Smith, D. J. et al. Phycobilisome-deficient strains of Synechocystis sp PCC 6803 have reduced size and require carbon-limiting conditions to exhibit enhanced productivity. Plant Physiol. 165, 705–714 (2014).

    Article CAS PubMed PubMed Central Google Scholar

  • Zhang, J. Z. et al. Photoelectrochemistry of photosystem II in vitro vs in vivo. J. Am. Chem. Soc. 140, 6–9 (2018).

    Article CAS PubMed Google Scholar

  • Mersch, D. et al. Wiring of photosystem II to hydrogenase for photoelectrochemical water splitting. J. Am. Chem. Soc. 137, 8541–8549 (2015).

    Article CAS PubMed Google Scholar

  • El-Mohsnawy, E. et al. Structure and function of intact photosystem 1 monomers from the cyanobacterium Thermosynechococcus elongatus. Biochemistry 49, 4740–4751 (2010).

    Article CAS PubMed Google Scholar

  • Paul, N. Intermolecular Photophysics of Photosystem II Core Complexes at Protein-Nanomaterial Interfaces. PhD thesis, Univ. Cambridge (2015).

  • Longatte, G., Rappaport, F., Wollman, F.-A., Guille-Collignon, M. & Lemaître, F. Mechanism and analyses for extracting photosynthetic electrons using exogenous quinones–what makes a good extraction pathway? Photochem. Photobiol. Sci. 15, 969–979 (2016).

    Article CAS PubMed Google Scholar

  • Pandya, R., MacQueen, R. W., Rao, A. & Davies, N. J. L. K. Simple and robust panchromatic light harvesting antennacomposites via FRET engineering in solid state host matrices. J. Phys. Chem. C. 122, 22330–22338 (2018).

    Article CAS Google Scholar

  • Hinrichsen, T. F. et al. Long-lived and disorder-free charge transfer states enable endothermic charge separation in efficient non-fullerene organic solar cells. Nat Commun. 11, 5617 (2020).

    Article CAS PubMed PubMed Central ADS Google Scholar

  • Wey, L. T. et al. A biophotoelectrochemical approach to unravelling the role of cyanobacterial cell structures in exoelectrogenesis. Electrochim. Acta 395, 139214 (2021).

    Article CAS Google Scholar

  • Photosynthesis re-wired on the pico-second timescale (2025)
    Top Articles
    Latest Posts
    Recommended Articles
    Article information

    Author: Dean Jakubowski Ret

    Last Updated:

    Views: 6004

    Rating: 5 / 5 (50 voted)

    Reviews: 89% of readers found this page helpful

    Author information

    Name: Dean Jakubowski Ret

    Birthday: 1996-05-10

    Address: Apt. 425 4346 Santiago Islands, Shariside, AK 38830-1874

    Phone: +96313309894162

    Job: Legacy Sales Designer

    Hobby: Baseball, Wood carving, Candle making, Jigsaw puzzles, Lacemaking, Parkour, Drawing

    Introduction: My name is Dean Jakubowski Ret, I am a enthusiastic, friendly, homely, handsome, zealous, brainy, elegant person who loves writing and wants to share my knowledge and understanding with you.